Jumat, 30 Oktober 2015

BANDUL SEDERHANA

1). PENGERTIAN
Gerak Harmonik Sederhana (GHS) adalah gerak periodik dengan lintasan yang ditempuh selalu sama (tetap). Gerak Harmonik Sederhana mempunyai persamaan gerak dalam bentuk sinusoidal dan digunakan untuk menganalisis suatu gerak periodik tertentu. Gerak periodik adalah gerak berulang atau berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu :

  • Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
  • Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik:
  • Gerak harmonik pada bandul: Sebuah bandul adalah massa (m) yang digantungkan pada salah satu ujung tali dengan panjang l dan membuat simpangan dengan sudut kecil. Gaya yang menyebabkan bandul ke posisi kesetimbangan dinamakan gaya pemulih yaitu dan panjang busur adalah Kesetimbangan gayanya. Bila amplitudo getaran tidak kecil namun tidak harmonik sederhana sehingga periode mengalami ketergantungan pada amplitudo dan dinyatakan dalam amplitudo sudut.
  • Gerak harmonik pada
    pegas: Sistem pegas adalah sebuah pegas dengan konstanta pegas (k) dan diberi massa pada ujungnya dan diberi simpangan sehingga membentuk gerak harmonik. Gaya yang berpengaruh pada sistem pegas adalah gaya Hooke.
  • Gerak Harmonik Teredam
    Secara umum gerak osilasi sebenarnya teredam. Energi mekanik terdisipasi (berkurang) karena adanya gaya gesek. Maka jika dibiarkan, osilasi akan berhenti, yang artinya GHS-nya teredam. Gaya gesekan biasanya dinyatakan sebagai arah berlawanan dan b adalah konstanta menyatakan besarnya redaman. dimana = amplitudo dan = frekuensi angular pada GHS teredam.
Gerak harmonik pada bandul

 Gerak harmonik pada bandul

    Bandul sederhana terdiri atas benda bermassa m yang diikat dengan seutas tali ringan yang panjangnya l (massa tali diabaikan). Jika bandul berayun, tali akan membentuk sudut sebesar α terhadap arah vertical. Jika sudut α terlalu kecil, gerak bandul tersebut akan memenuhi persamaan gerak harmonic sederhana seperti gerak massa pada pegas.
Kita tinjau gaya-gaya pada massa m. dalam arah vertical, massa m dipengaruhi oleh gaya beratnya yaitu sebesar w = mg. gaya berat tersebut memiliki komponen sumbu x sebesar mg sin α dan komponen sumbu y sebesar mg cos α.

komponen gaya
Gaya dalam arah sumbu x merupakan gaya pemulih, yaitu gaya yang selalu menuju titik keseimbangan. Arah gaya tersebut berlawanan arah dengan simpangan, sehingga dapat ditulis :

Dalam arah sumbu y, komponen gaya berat diimbangi oleh tegangan tali T sehingga gaya dalam arah sumbu y bernilai nol,
= 0
Jika sudut α cukup kecil (α < ), maka nilai sinus tersebut mendekati dengan nilai sudutnya, sin α ≈ α. Sehingga hubungan antara panjang busur x dengan sudut teta dinyatakan dengan persamaan :
                x = L sin α atau α = x/L
(ingat bahwa sudut teta adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r) jika dinyatakan dalam satuan radian. Karena lintasan pendulum berupa lingkaran maka kita menggunakan pendekatan ini untuk menentukan besar simpangannya. Jari-jari lingkaran pada kasus ini adalah panjang tali L)
Jika massa m menyimpang sejauh x dari titik seimbang, maka massa tersebut akan mengalami gaya pemulih sebesar :
            F = mg sin α ≈ mg α = x
Gaya pemulih tersebut sebanding dengan simpangan, seperti pada gerak harmonic sederhana. Sekarang kita akan membandingkan gaya pemulih untuk massa pada pegas dan gaya pemulih untuk system bandul sederhana.
Pada pegas berlaku F = kx, sedangkan pada bandul berlaku F = x. harga pada bandul adalah tetap sehingga dapat dianalogikan dengan tetapan pegas (k).
Periode bandul dapat pula dianalogikan dengan periode gerak massa pada pegas,
T = 2 , dengan mengganti k dengan mg/L :
T = 2 = 2
Dengan eliminasi m, kita memperoleh periode ayunan bandul sebesar :
T = 2
Frekuensi Pendulum Sederhana dapat dicari dengan rumus :
Ini adalah persamaan frekuensi pendulum sederhana
Besarnya percepatan gravitasi dapat ditentukan dengan persamaan :
            T = 2
  
                T2 = 2






                g =
    Syarat sebuah benda melakukan Gerak Harmonik Sederhana adalah apabila gaya pemulih sebanding dengan simpangannya… Apabila gaya pemulih sebanding dengan simpangan x atau sudut teta maka pendulum melakukan Gerak Harmonik Sederhana.
    Bandul sederhana yang terdiri dari sebuah tali dan sebuah titik massa memiliki persamaan gerak

yang dapat disederhanakan menggunakan pendekatan deret fungsi sinus

Untuk nilai kecil suatu pendekatan dapat diterapkan pada persamaan di atas, yaitu

sehingga persamaan gerak yang dimaksud dapat menjadi

sehingga mudah dipecahkan dan memberikan solusi

yang telah umum dikenal. Dimana bernilai

dengan adalah panjang tali dan adalah percepatan gravitasi.
    Gaya berat obyek dekat permukaan bumi
Secara tidak sadar apabila kita mengitung gaya berat suatu benda yang berada dekat permukaan bumi, kita telah melakukan pendekatan dari rumus gravitasi Newton, yang berbentuk

Jika benda berada di atas permukaan bumi maka jari jari yang dimaksud adalah jari-jari bumi ditambah ketinggian benda

dengan nilai adalah antara 6.356,750 km dan 6.378,135 km. Perhatikan nilai jari-jari bumi yang cenderung amat besar apabila dibandingkan dengan ketinggian benda umumnya dari permukaan bumi. Dapat dituliskan umumnya

yang merupakan berat, di mana

adalah percepatan gravitasi
Hal ini dikarenakan nilai jari-jari bumi yang amat besar dibandingkan dengan ketinggian umumnya benda dari permukaan bumi.

    Lintasan dari massa titik kadang-kadang disebut bob pendulum tidak berupa gas lurus, akan tetapi berupa busur dari suatu lingkaran dengan jari-jari l yang sama dengan panjang tali, kita menggunakan jarak x sebagai koordinat kita yang di ukur sepanjang busur.
    Di sini kita menekan kembali bahwa gerak suatu pendulum hanya mendekati harmonik sederhana.




Tidak ada komentar:

Posting Komentar

Wikipedia

Hasil penelusuran